The neural decoding toolbox
نویسندگان
چکیده
منابع مشابه
The neural decoding toolbox
Population decoding is a powerful way to analyze neural data, however, currently only a small percentage of systems neuroscience researchers use this method. In order to increase the use of population decoding, we have created the Neural Decoding Toolbox (NDT) which is a Matlab package that makes it easy to apply population decoding analyses to neural activity. The design of the toolbox revolve...
متن کاملThe LRP Toolbox for Artificial Neural Networks
The Layer-wise Relevance Propagation (LRP) algorithm explains a classifier’s prediction specific to a given data point by attributing relevance scores to important components of the input by using the topology of the learned model itself. With the LRP Toolbox we provide platform-agnostic implementations for explaining the predictions of pre-trained state of the art Caffe networks and stand-alon...
متن کاملChapter 3 Neural Decoding
In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what is going on in the real world from neuronal spiking patterns. It is interesting to attempt such computations ourselves, using the responses of one or more neurons to identify a particular stimulus or to extract the value of a stimulus par...
متن کاملTree-Structured Neural Decoding
We propose adaptive testing as a general mechanism for extracting information about stimuli from spike trains. Each test or question corresponds to choosing a neuron and a time interval and checking for a given number of spikes. No assumptions are made about the distribution of spikes or any other aspect of neural encoding. The chosen questions are those which most reduce the uncertainty about ...
متن کاملDeep adversarial neural decoding
Here, we present a novel approach to solve the problem of reconstructing perceived stimuli from brain responses by combining probabilistic inference with deep learning. Our approach first inverts the linear transformation from latent features to brain responses with maximum a posteriori estimation and then inverts the nonlinear transformation from perceived stimuli to latent features with adver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroinformatics
سال: 2013
ISSN: 1662-5196
DOI: 10.3389/fninf.2013.00008